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Subspace lteration Search Method for Generalized
Eigenvalue Problems with Sparse Complex
Unsymmetric Matrices in Finite-Element
Analysis of Waveguides
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Abstract—In this paper, a numerical method for the robust eigenvalues of (1) and (2) are related by
computation of the number of eigenvalues within a closed contour A=T I 3
of a generalized complex eigenvalue problem is presented. As a =1 +pul 3)

result of this computation, it is possible to perform a systematic Let the dimension of the matrices Bé x N, p the number
search for the eigenvalues, ensuring that no eigenvalues are for- of eigenvectors we want to obtain, agpdhe dimension of the

gotten, and to optimize their calculation. Application is made to . .
the finite-element modal analysis of inhomogeneous waveguides, SUPSpace of vectors to be iterated, withki ¢ < N. It has
been suggested in [5] the heuristic choice

Index Terms—Algorithms, eigenvalues/eigenfunctions, finite- ]
element methods, nonhomogeneously loaded waveguides, poles, g = min(2p, p + 8). 4)

Zeros. The iterations start with the selection of a sef;dfial vec-

tors X and proceed with the computation of the subsequent
I. INTRODUCTION vectors using the recursion

LARGE class of engineering problems can be formulated (A— uB)X,41 = BX, (5)

in such a way that the solution is numerically obtainegiowed by a suitableB-normalization. The order of the

from a generalized matrix eigenvalue problem. The matricﬁ?oblem is reduced by carrying out a Rayleigh—Ritz analysis.
involved are usually large and sparse and can be complex %ﬂgﬁning the transformations

nonsymmetric in the most general case. A sparse matrix solver -
for the efficient solution of this class of completely arbitrary Aspr = Xsp1 (A= pB)Xoqq
generalized eigenvalue problems has been described in [1]-[3], B,y = XSTHBXSJHL (6)

in the context of using the finite-element method for the modgla jense eigenvalue problem of orgeis formed and solved
characterization of dielectric waveguides with symmetry of

translation. The solver is based upon the inverse subspace Ast1®s1 = Bop1 Poalsta @)
iteration method, in which a whole subspace is (inversely) The estimation of the eigenvectors is then
iterated to simultaneously yield a (small) set of eigenvalues X = X1 ®up1 8)

and eigenvectors. . . . .
The generalized eigenvalue problem arising from the finitéd the convergence is achieved whengtshifted eigenval-

element analysis of a waveguide has the form ues of smallest absolute value verify
AX = BXA ) thi_rS' < i=1p
or, equivalently, ’7';+1 , "

(A— uB)X = BXT 2) |’Ys—|—1|§|’ys+1|f "'S|’Vf+1|§|’7,9+1|§"'§|73+1|- 9)
whereA, B are non-Hermitian matrice$, andA are diagonal The convergence rate is gpoverned by the quotient
matrices of eigenvalueg; is a desired shift, and\ is the |_’7 | ‘ (10)
matrix of right eigenvectors. All these matrices and the shift geien |7

will, in general, be complex. The shiftis introduced in order hich justifies the election of a subspace dimension higher
to force the convergence of the algorithm toward a cluster gfan the actual number of desired eigenvalues.

desired eigenvalues centered,atn the complex plane. The  ag it stands, the method can be very powerful, provided
that one is able to make the correct decisions as to what
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closed waveguides with symmetry of translation, filled witlhe given accordingly to the known number of eigenvalues

lossy, inhomogeneous, anisotropic, or bi-anisotropic media. be found or, in case where this was too high, the circle

The following discussion will focus on this specific applicatioould be subdivided into smaller slightly overlapping circular

of the solver, but, in general, is valid. regions where the procedure would be recurrently repeated.
A pure finite-element method can tackle problems whefighe method of computing the number of eigenvalues lying

(e.g., due to their geometrical complexity) no analyticakithin a circle of given radius which we present is quite

method is applicable, but conversely it provides no analyticsiraightforward from the theoretical point of view, but it turns

insight of the propagation phenomenon or the distributiasut to be preferable to other methods which can be found in

of the modal spectrum. Consequently, there is an enormdbe mathematical literature, as shall be explained.

practical difference between the cases when one is trying

to check their results against previously existing data from || compUTATION OF THE NUMBER OF EIGENVALUES

when one is conducting an unprecedented investigation

In the former case, it is quite straightforward to choos Let Ao be a complex numben, is an eigenvalue of (1),

convenient complex shifts and the right dimension for th and only if

itgrated subspace each 'time. 'Besides, the totgl number of FW)|amr, = [A = 2B =0 (11)
eigenvalues to be found is obvious from the available graph.

However, in the latter case, one has to perfortnug search where f()) is the characteristic polynomial of degre®

for the eigenvalues, involving not only their location, but theidefined as the determinagit\) = |A — AB|. Let C be a
number as well, which is unknown in advance. The standactbsed contour on tha plane, such that there are no zeros of
theorems cannot be invoked since the matrices hold no spegigh) on the contour. The number of zerpsn the interior of
properties of definiteness or symmetry. This is in contraét is equal to the contour integral

with lossless three-dimensional (3-D) eigenvalue problems in

!
which it is indeed possible to make use of the properties of v= i 0 dA. (12)
Sturm sequences to efficiently compute this number for closed 2nj Jo JON)
segments of the real axis [4]. The mapping = f(\) maps the contouf into the closed

The uncertainty about the number of eigenvalues whighye . Equation (12) can be put as
must be calculated is twofold: uncertainty about the total

number of eigenvalues within a certain large region or with y :if ') d\

some specific properties (e.g., the number of modes below 2rj Jo f(A)

cutoff or with an attenuation constant less than a given 1 ]{ dlln f(N)] I\

threshold) and uncertainty about the number of eigenvalues in Tomj fo A

a region surrounding a complex shift, i.e., uncertainty about the

choice ofp. Under these circumstances, there is the potential = 274 6‘1[111 w] (13)

risk of inadvertently missing some modes of the waveguide,
something which would rend the analysis useless for certaiiereln w = In|w| 4 j phase w, which immediately leads
practical purposes, such as the use of the numerical modestéothe well-known result that is simply the number of times
mode-matching applications. Additionally, the convergence 8fat C encircles the origin.
the iterations may fail if one attempts to compute an inap- In theory, there are several ways of computingin [6],
propriate number of eigenvectors. Moreover, these difficultiés thorough discussion of the subject of locating the zeros
are exacerbated by the use of functionals with extranec®san arbitrary analytic function can be found, including the
nonphysical modes associated to the zero eigenvalue, whighinputation of its number as a preliminary step. A successful
then reaches a multiplicity of hundreds for an average-sigéect application of the methods expounded in the reference
grid. It is the presence of this multiple eigenvalue that maké&gn be found, for example, in [7]. However, on account of the
it harder to locate and compute those eigenvalues that fieculiarities of the functiorf()), all of the proposed methods
very near the origin than those farther away from it. Ihased upon (12) have to be discarded, for the following
general, multiple physical eigenvalues or clusters of very clogeasons.
eigenvalues may also be a source of trouble, as it becomeg) Only the function and not its derivative is available.
more difficult to ascertain that all of the eigenvalues have  Thus, the direct computation of the contour integral
been found. (12) has to be ruled out. Another possibility would be
The aim of this paper is to describe a way of performing a  to estimate the derivative directly from the computed
systematic search for the eigenvalues in the complex plane, values off in the integration points of some quadrature
fixing the shortcomings of the subspace iteration method rule, as explained in [6]. However, this method does not
described in the preceding paragraph. To do this, it is essential work because of 2).
to compute the number of eigenvalues enclosed in a giver2) The value off(\) cannot always be represented using
contour before their finding is attempted. The convergence of either REAL or even DOUBLE PRECISION arithmetic.
the eigenvalues depends on their distance from the shift, a In practical cases, it is perfectly possible to find absolute
fact that suggests that the contour be a circumference centered values as low as.E — 3000 or as high ad.F + 2000,
at the selected shift. The dimension of the subspace would e.g., see 3).
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3) Even worse, the dynamic range of the values can eadilijconsecutive pointéw;, w;11) cuts the negative real axis the
outrun the dynamic range of a REAL and, in someame number of times (i.e., one or not all) as the corresponding
cases, a DOUBLE PRECISION number. That mearwsirved segment of the contodr [6]. Using this rule, a first
that normalized quantities may be almost as unwieldy assic algorithm for the computation of the number of zeros
the unnormalized ones. Moreover, even if normalizatiomould be as follows.
is possible, these extremely strong variations cause thel) Sample the contouf at the points
numerical integration to give absolutely disastrous re-
sults for any reasonable or feasible number of integration A= N6:),0; = 0, +i00, A§ = (6 — 9a)’
points. ’ o ' Np

The numerical experiments that we have carried out show 0 =0, Np.

that the only practical way of tackling this problem is through
the direct computation of the number of times that the closed
contourC encircles the origin of the plane. To perform this
computation, only the phase of the determinants is relevant.
Assume that the contou? can be described as a continuous
function of a real parametet

2) Compute the argumenisan2(w;) = atan2(|A—\; B|).
The arguments are computed By | atan2(u’ ;) (ade-
quately shifted to the intervel—=, 7]) where thev};s
are the diagonal elements of the matrikresulting from
the LU factorization of the matrixd — \;B: LU =
A - \B.

C={\eC/A=)0),0cR0,<0<6,} (14) 3) Compute the phasqshasefw;] using (17).
4) Compute the number of zeros using (15).

with the condition \(6,) = A(6,). For example, ifC = The bulk of the numerical burden of this algorithm is

{A/|A=p| =7} then\(8) = p+7¢/%,0 < 6§ < 27. Now, if & attached to performing the LU factorizations of 2). The com-

varies continuously frord, to 6,, the phase of (#) = f(A(¢)) putation time grows rapidly with the dimension of the matrices

will vary continuously fromphase[f(6,,)] to phase[f(6,)] and and it is essential to keep the number of computed factoriza-

the number of loops around the origin is tions as low as possible. The minimum number of sample
points is given by the number below which the unwrapping
1 -
v = 5—(phase[f ()] — phase[f(fa)]) rule starts to fail.
217r Obviously, a major shortcoming of the algorithm is that
:2—(phase[wb] — phase[w,]). (15) the necessary number of samples is unknown. One could
m

progressively refine the discretization of the contour, com-
The difficulty with (15) is that we cannot compute theputing the estimated number of zeros for each discretiza-
continuous functiorphase[w] directly. Instead, we have tion, and accepting the result when the convergence had
apparently been attained. However, this approach is neither
phasew] = atan2(imag(w), real(w)) +27n  (16) efficient nor reliable. Clearly, a uniform sampling scheme
is inadequate for this problem because the phase variations
where the functiomtan2 is the standard FORTRAN intrinsic (the “bandwidth” Of the phase) can be arbitrar”y fast since
function, returning an argument between and; the integer there is always the possibility of finding several simple or
n has to be increased or decreased by one each time-themultiple zeros arbitrarily near the contodt. In theory, if
contour cuts the negative real axis in the counterclockwige sample point)\; happens to lie sufficiently near a too-
direction or the clockwise direction, respectively, compensadfose zero, the matrixd — X\;B will become numerically
ing for the jump discontinuity of the argument returned by theingular and the LU factorization will fail, signaling the
atan2 function. presence of the zero, but this is a random and improbable

If we sample the values;, w;y1 of the function for two event that will seldom take place; most often the phase will
“close” pointsA; = A(6;), Aix1 = A(f;41) on the contoulC go undersampled and an incorrect number of zeros will be
the correctiom;; should be given the value which makes theomputed, even though most of the contour will have been
phase difference smaller, leading to the “unwrapping” rule [&astly oversampled.

It is clear from the above discussion that the optimum
sampling scheme would be a variable step-size sampling
scheme. The step size should vary on a sample by sample
n; + 1, atan2(w;4+1) — atan2(w;) < —w  basis, reflecting the changes of the derivative of the phase.

Rir1 = § T, —m <atan2(w;41) — atan2(w;) <7 The steps should be biggest where the phase is varying more
Ay — 1, 7 < atan2(w;4+1) — atan2(w;) predictably (i.e., approximately linearly with respect to the
(17) parametep) and smallest where the phase is rapidly changing
its rate of growth. The algorithm that we propose is based on
where #; and 7;; are the estimations of the true factorsthe prediction of the valughase[w; ;] from the previously
The two sample points can be defined to be close precisestimated valuephase[w;],; = ¢ — k,---,¢, where k is
if (17) gives the correct answer fgshase[w; 1], provided the order of the predictor. If the predicted valggo; ]
7; 1S correct (d; = n;). The unwrapping rule will work and the computed value differ only tolerably, the estimation
correctly when the straight-line segment connecting the cougeaccepted and a new step size is calculated for the next

phaselw;] = atan2(w;) + 27,
phaselw;+1] = atan2(w; 1) + 27,41
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sample. If, instead, the difference is greater than a toleranceSome of the steps of this variable step-size algorithm

the iteration is repeated with a smaller step size.

deserve further discussion. The predictifiv; 1] is simply

The computation of the number of zeros would proceedtie value of the interpolating polynomial that fits the previous

with the following steps:

Step 1. computeatan2fw;],i = 0,---,k, with A8 =
Aemin;

Step 2. use (17) to computéhase|w;],¢ =0, -,k

loop ¢ = k,---;

Step 3.6,11 = 6, + Af
if 91‘_1_1 > 6, then 91‘_1_1 = 9(,; Af =6, — 6, end if;

Step 4. compute  the  prediction plw;1]  from
phase[wj]vj =1- k? o 7L!

Step 5. computetan2]w; 1] and phase[w; 1] using (17),
with the predictionp[w;+1] as the reference;

Step 6. compare the errer,; = |phase[w;;+1] — plwit1]]

k + 1 estimated phases. Since the polynomial is used for ex-
trapolation purposes rather than interpolation, its order cannot
be too high, because the error can grow very fast outside the
interval[6; &, 6;] for high-order polynomials; a good choice is

a third-order polynomial. Besides, the lower the order of the
polynomial, the more affordable the resetting of the predictor
and the error model becomes. The phase reference for the
unwrapping is the predicted value rather than the previous
estimated phase. This makes it possible to skip over whole
loops around the origin in a single step whenever the phase
variation is smooth enough for the prediction error to keep
within the acceptable bounds. It is especially advantageous

with the tolerances and branch the execution agshen the contoulC’ encloses a very high number of zeros,

cordingly:

if €i+1 < €ace then
/* error is OK %/
if 91‘_1_1 =06, then
/* successful ene/

v= i(phause[wi_i_l] — phase[wg])
return
else
/* size-step for new sample poiny
A= Afxs| 22
&i+1
1t =141
end if
else if A8 > A8, then
if €it1 < €ace then
/* error model still OK:
reduce size-step to bring error
below the acceptable toleraneg
Af=AG+3 <Ea—
i1
else
/* the error model is not working:
abrupt decrease of step-sizg¢

A6 = max g, Anin
m

re-sample the previously accepted
points before the last
with new step-size:
computeatan2(w;_;) with
0iyj=0;—jA0,j=1,---k
computephase[w;_;] with the new
Plwi—;],5 =1,-- -,k as reference
end if
else
/* step-size has become too small:
restart iterations from the beginning
for a new contourlC' x /
choose new parameters for the new
contour
gotol)
end if
end loop.

particularly when the multiple null eigenvalu® = 0 (a
multiplicity ranging the hundreds) of certain functionals is
“searched,” for the reasons that will be explained in the context
of the practical application of the method.

One aspect that greatly affects the performance of the
algorithm is the sound choice of the toleranegs. é,.. and
the minimum stepAf,.;,. The values ofs,.. and Af,;,
have to be chosen regarding the level of numerical noise
of the computed arguments; the rule is that one should
not try to predict the phase with greater accuracy than the
actual accuracy of the arguments computed from the LU
factorization, neither should the step size be so small that the
discrete nature of the underlying arithmetic becomes evident.
The upper bounds of the parameters should attend to the need
of preserving the robustness of the algorithm while minimizing
the number of computed determinants. The objective of the
algorithm is to resolve the ambiguity of the arguments returned
by the atan2 function. The prediction errors are unimportant
from the standpoint of the accuracy of the reconstructed phase
as long as the ambiguity is correctly resolved; besides, these
errors are not cumulative because actually the true values
of the phase and not the predicted ones are used for the
subsequent predictions.

Obviously, the magnitude of the error is an indicator of the
performance of the predictor, which can be thought to be in
one of the following states regarding the tracking of the phase.

Locked The error model is working well. The cal-
culated step siz&f# = ABxs(eacc/civ1)
from the error model allows an accurate
prediction.

Partially locked The calculated step size has resulted in an
inaccurate prediction, although the ambi-
guity of the phase is actually correctly
resolved. The error is small enough to
estimate a new smaller step siz¢ —
AB*5(e400/€:+1) Which should bring the
predictor back to the locked state again.

Unlocked The error is unacceptable, which indi-
cates that the error model is not working,
due to an abrupt variation, compared
with the present scale of sampling, of
the rate of change of the phase. An
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t eigenvalue problem and its multiplicity equals the number

Y d of free longitudinal components of the discretized field. The
second formulation [9] has the propagation constant as the
eigenvalue(A = ) and the eigenvector corresponds to the

""" h transversal components of both the electric and magnetic
€, field F;, H;. For a waveguide inhomogeneously filled with
. — isotropic media, it is straightforward to derive an equivalent
a -w w X

Galerkin method
Fig. 1. Cross section of a shielded dielectric image guide.

// [(jws)—lvt X @ - Vi X Hy + jwpiy, .E} dQ
attempt to force the predictor back to

the locked state is made by resetting :fy// - 2 X Ey dQ
the filter, resampling backward the phase o

function with a strongly reduced step size o o -
A8 = max((A8/m), Apin)- / [(qu) Vi X We - Vi X By + jwew, -Et} de2
The calculation of each new step size is based on the £ o
assumption that the dependence of the prediction error on the - ,y// — 79,2 x Hy dQ (21)
step size is of the form x
e(8; Af) ~ c(f)(AG) (18)  wherew), w. are magnetic and electric test functions, respec-
; tively, 2 is the section of the waveguide, and the boundaries
from which we have " ' )
Ukt are either PEC, PMC, or both. No extraneous solutions are
€acc . €acc St associated to the null eigenvalue in this case, but both the
s = min | ¢ »Smax | = Cs - ;
Eit1 £it1 forward-traveling and backward-traveling modes appear as

1k distinct solutions with opposite sign eigenvalues. Both formu-
g Eace —¢, Face <ec., F<k+1 (19) lations have been |mplemented using mixed-order covariant
€i41 €it1 elements [10]. For a given mesh of fixed number and location
X S )
wherec, is a safety factor slightly smaller than unity ang.,. oflthe elemerg)ts, tf}edformulatu;r}m_dfy glveas problems W':h h
bounds the relative increment of the step size to prevent &:ower number of degrees of freedom and, consequently, the

cessive differences between adjacent points which deteriorgpanputation of egch determinant is faster.
the effective order of the predictor. It should be pointed out that the example has been chosen

because of the availability of well-known results for validation
purposes. Although the matrices involved are not as general
as the formulation assumes, no advantage has been gained
To demonstrate the validity of the method, we will searcfiom this fact, and the completely general sparse complex LU
for the constants of propagation of the modes of the shieldggttorization and eigensolver have been used. The algorithm
dielectric image guide [1], [11] (see Fig. 1) using two differenias been proven equally effective in every practical problem
vectorial finite-element formulations. The first one [8] has thg which we have applied it.
square of the propagation constanas the eigenvalug\ = In these examples, we will deal exclusively with regions
~v?) and the discretized magnetic (or electric) fiéld+2h. as of circular shape. Consequently, the computed number of
the eigenvector, where, is the scaled longitudinal componentigenvalues within the circumference directly becomes the
H., vh. = H.. The expression from which the generalizedpecified number of eigenvaluggo be found while the shift

I1l. NUMERICAL RESULTS

eigenproblem is derived is is the center of the circumference
// [(jws)flvt X ﬁt - Vt X Ft +7wuﬁt - Ft:| dQ O = {)‘/|)\ - N| = T} = {)‘(9) =t + chavo S 9 S 271'}
Q (22)
=72 | [Giwe) @i+ Vi) - ists i | iplici
% The first example consists in computing the multiplicity of
Q the null eigenvalue of the formulation with = ~? (which

(H; + Vihy) +jwuwzhz} d§Q (20) will be referred to as “formulation I”) for a given mesh. In all
the following examples, the dimensions of the waveguide are

where Q is the transversal section of the waveguidey b= —a =d = 7.899 mm, w = 3.45 mm, andh = 3.2 mm
are the permittivity and permeability of the medium, anfl], the relative permittivity of the dielectric is,. = 9, the
w =, + 2wl = W, — vyw, is any test function in the samefrequency isf = 12 GHz. The mesh consists of 45 elements,
admissible function space as the trial functior= H, + 2h.; the number of degrees of freedom is 597, and the number of
the waveguide walls are of either perfect electrical conductfsee longitudinal components is 209. It takes approximately
(PEC), perfect magnetic conductor (PMC), or a combinatidn3 s to compute each determinant on a Pentium-133 PC.
of both. The null eigenvalue is a solution of the generalizete choose a small radius = 10~%, but one as small as
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Fig. 2. Multiple null eigenvaluex = 0 (formulation 1) in theX plane. A
contourC of a very small radius encloses only this eigenvalue, except for t
different cutoff frequencies of the modes.

ATAN2(w) (rad)

|L, atan2 samples J

200F

0 0.005 0.07 5.015 002 0025 0.03
THETA/(2 PI)

Fig. 4. Argumentatan2(w) and actual samplestan2(w;) for the contour
of Fig. 2. Only the first loop is unambiguously sampled.

.
+ phase samples i

0.2 0.4 0.6 0.8 1
THETA/(2 PI)

imag(lambda)

Fig. 3. Normalized reconstructed phase (loops) for the contour of Fig. 2.
The number of zeros is 209, while the number of samples is only 34.

r = 5.107% is equally practical (see Fig. 2). The number of I
eigenvalues within the contour coincides with the multiplicity 0 ) 9
of the null eigenvalue, except when the frequency approaches real(lambda)
the cutoff frequency of one of the modes of the guide. | ) ) 9 )

. . ; . 5. Location of th lueky; = v2/|Aoi| < 16 (formulation I:
this case [ = 12 GHz), no mode is near cutoff, but it WOU'dflg: 12 GOI—?; Is:m?_phv(: ngegg)a Hew /Pl (formuiation
suffice to repeat the calculation at a slightly different frequency )

to validate the result. The reconstructed phase is represented ) ) ) ]
in Fig. 3, normalized to directly give the number of loops Next, we will attempt to find all the physical eigenvalues

around the origin or zeros, Which igon-piys = 209; the lying within acircumf_erence of radius = 1§ for afrequency '
number of samples is 34 (it would take at least 20¢*2118 J Of 12 GHz (see Fig. 5). The search will be carried out in
equidistant samples for the simple unwrapping rule (17) to gife SyStematic way. The first step is to computel6) (see
the correct answer). Since the shift coincides with the multipfdd- 6); the result is/(16) = 214 and, from (23), we have
zero and the remaining zeros are very distant compared to tpeys(16) = 214 — 209 = 5, i.e., there are five physical
radius of the circle, the phase is an almost perfectly line§fgenvalues to be found. Next, the circle is covered by nine
function of the paramete. This fact makes the computation®verlapping smaller circles in the way suggested by Lehmer
especially efficient and tens of loops are skipped from samj8d adopted in [6] as: 1) a concentric circle of radiy
to sample once the step has grown from its starting minimu@id 2) eight circles of radiusr /12 regularly spaced around
value, which initially ensures that the ambiguity of the phaé@e remaining annulus (the distance of their centers from the
is correctly resolved. The increase of the sampling step candrgginal center is(3/2)ry/1 — (1/v/2)).
observed in detail in Fig. 4. In this case (see Fig. 7), we computé¢r/2) = v(8) =
Once the multiplicity of the null eigenvalue is known, the11; Vphys(8) = 2. At this stage, one of these eigenvalues plus
number of physical eigenvalues of absolute value less thafha three within the annulus and a new outer eigenvalue are
value r is simply successfully found.
In Figs. 8-10, the details concerning circle 2 can be ob-
served. The total number of samples is 117, with 13 acceptable
Vphys(7) = V(') — Vnon-phys- (23) prediction errors and two unacceptable ones. The errors are
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250 T T T T
200

L]

o

2

i

7]

< 100}

o
50 + phas? samples J

02 54 06
THETA/(2 PI)

08

PHASE(W)/(2 PI)

10k + phase samples ]
15} ]
-2 1 1 1 1
00 0.2 0.4 0.6 08 1
THETA/(2 PI)

Fig. 6. Normalized reconstructed phase (loops) for the contour of Fig. Big. 9. Normalized reconstructed phase (loops) for the contour of Fig. 8.
r(16) = 214. The number of samples (total)/acceptable errors/unacceptable= 2. The number of samples (total)/acceptable errors/unacceptable errors

errors is 64/6/1.

imag(lambda)

10 0 10
real(lambda)

Fig. 7. Lehmer's subdivision of the circle of Fig. 5. Four out of the five

is 117/13/2.

3F T T T T .

ATAN2(w) (rad)

[ x atan2 samples ‘

_3- 1 1 1 7

1 L
0.26 0.28 0.3 0.32 0.34 0.36 0.38
THETA/(2 PI)

eigenvalues within the contour and a new outer eigenvalue are successfully

found.

1

0 5 10
real(lambda)

Fig. 8. Lehmer's subdivision of the circle of Fig. 5. Location of the releval

zeros for circle 2 = 12.98871,r = 6.666667.

15

Fig. 10. Argumenttan2(w) and actual samplestan2(w; ) for the contour
of Fig. 8 (detailed view). The hump of the function corresponds to the presence
of an outer complex zero lying near the contour.

the derivative of the phase in its vicinity, and the strong
overall fluctuation of the phase because of the presence of
the multiple null eigenvalue displaced from the center of the
circle. The subdivision could proceed recursively to find the
single remaining zero, but it is more straightforward to try out
different shifts around the origin and set= 1 directly.

We will search for the same modeg & 12 GHz) using
the second formulation (“formulation 11”). The mesh is the
same as the one used with formulation | (45 elements), but
now the number of degrees of freedom is 776 and it takes
approximately 1.7 s to compute each determinant. We have
Xo; = £7; and the radius of the circle must be= /16 = 4.
The location of the zeros and different Lehmer’'s contours

"tan be seen in Fig. 11. The need for a subdivision of the

original circle depends on the ability of the solver to handle

due to the presence of the two complex conjugate zeros lyiagsubspace of dimensiop = 2p = 20. As in the previous
very near the contour, which provoke a sharp variation ekample, two additional outer eigenvalues are found in the
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Fig. 11. Location of the eigenvalues; = ++;/|Xo:| < 4 (formulation II:

f = 12 GHz; vpon-phys = 0) and Lehmer's contours employed for their
computation (the rest are unnecessary due to the symmetry of the locatio
of the zeros).
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process of the subdivision and, again, there are some zeros
lying very near the contour of some of the circles, which
stresses the importance of ensuring the robustness of the
routine that computes the number of zeros. In Fig. 12, it can be
seen in circle 3 with an outer zero bordering the contour; the
normalized reconstructed phase can be observed in Fig. 13.
The total number of samples/acceptable errors/unacceptable
errors is 94/7/4. The rest of the contours of Fig. 11 pose no
special difficulty.

1 Regarding the number and the location of the eigenvalues,
the results are consistent with those shown in the references.
Of course, it is hardly necessary to mention that the results are
fully self-consistent (i.e., that the predicted and the computed
number of eigenvalues are identical in every case, which
asserts the robustness of the predictor).

IV. CONCLUSION

"A method has been presented which solves the shortcomings

of the otherwise powerful inverse subspace iteration method
for the solution of generalized complex eigenvalue problems.
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Fig. 12. Lehmer’s subdivision of the circle of Fig. 11. Location of the

relevant zeros for circle 3: = 2.2961(1 + j); r = 1.6667. [1]
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Fig. 13. Normalized reconstructed phase (loops) for the contour of Fig. 1[20]
v = 0. The number of samples (total)/acceptable errors/unacceptable errors
is 94/7/4.

The reasons that justify the need for this method have been
explained. An algorithm for the computation of the number
of eigenvalues within a closed contour is given. The aim of
the algorithm is to minimize the numerical burden and yet to
ensure the robustness of the calculation. It has been shown
that the presence of an identically null eigenvalue of high
multiplicity affects the way in which the search for eigenvalues
of small absolute value has to be conducted. Several numerical
examples have been analyzed which show the effectiveness of
the proposed method and illustrate the possibility of perform-
ing a systematic search for the eigenvalues of a problem. The
recursive and exhaustive nature of the proposed method of
search guarantees that all the modes lying within a finite-size
closed contour be found.
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