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Subspace Iteration Search Method for Generalized
Eigenvalue Problems with Sparse Complex
Unsymmetric Matrices in Finite-Element

Analysis of Waveguides
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Abstract—In this paper, a numerical method for the robust
computation of the number of eigenvalues within a closed contour
of a generalized complex eigenvalue problem is presented. As a
result of this computation, it is possible to perform a systematic
search for the eigenvalues, ensuring that no eigenvalues are for-
gotten, and to optimize their calculation. Application is made to
the finite-element modal analysis of inhomogeneous waveguides.

Index Terms—Algorithms, eigenvalues/eigenfunctions, finite-
element methods, nonhomogeneously loaded waveguides, poles,
zeros.

I. INTRODUCTION

A LARGE class of engineering problems can be formulated
in such a way that the solution is numerically obtained

from a generalized matrix eigenvalue problem. The matrices
involved are usually large and sparse and can be complex and
nonsymmetric in the most general case. A sparse matrix solver
for the efficient solution of this class of completely arbitrary
generalized eigenvalue problems has been described in [1]–[3],
in the context of using the finite-element method for the modal
characterization of dielectric waveguides with symmetry of
translation. The solver is based upon the inverse subspace
iteration method, in which a whole subspace is (inversely)
iterated to simultaneously yield a (small) set of eigenvalues
and eigenvectors.

The generalized eigenvalue problem arising from the finite-
element analysis of a waveguide has the form

(1)

or, equivalently,

(2)

where , are non-Hermitian matrices, and are diagonal
matrices of eigenvalues, is a desired shift, and is the
matrix of right eigenvectors. All these matrices and the shift
will, in general, be complex. The shift is introduced in order
to force the convergence of the algorithm toward a cluster of
desired eigenvalues centered atin the complex plane. The
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eigenvalues of (1) and (2) are related by

(3)

Let the dimension of the matrices be , the number
of eigenvectors we want to obtain, andthe dimension of the
subspace of vectors to be iterated, with . It has
been suggested in [5] the heuristic choice

(4)

The iterations start with the selection of a set oftrial vec-
tors and proceed with the computation of the subsequent
vectors using the recursion

(5)

followed by a suitable -normalization. The order of the
problem is reduced by carrying out a Rayleigh–Ritz analysis.
Defining the transformations

(6)

the dense eigenvalue problem of orderis formed and solved

(7)

The estimation of the eigenvectors is then

(8)

and the convergence is achieved when the-shifted eigenval-
ues of smallest absolute value verify

(9)

The convergence rate is governed by the quotient

(10)

which justifies the election of a subspace dimension higher
than the actual number of desired eigenvalues.

As it stands, the method can be very powerful, provided
that one is able to make the correct decisions as to what
values should be given to the different parameters involved;
the number of desired eigenvaluesespecially.

The interest of the authors in the solver is the same
interest that led to its development, i.e., the finite-element
computation of the propagation constants of the modes of
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closed waveguides with symmetry of translation, filled with
lossy, inhomogeneous, anisotropic, or bi-anisotropic media.
The following discussion will focus on this specific application
of the solver, but, in general, is valid.

A pure finite-element method can tackle problems where
(e.g., due to their geometrical complexity) no analytical
method is applicable, but conversely it provides no analytical
insight of the propagation phenomenon or the distribution
of the modal spectrum. Consequently, there is an enormous
practical difference between the cases when one is trying
to check their results against previously existing data from
when one is conducting an unprecedented investigation.
In the former case, it is quite straightforward to choose
convenient complex shifts and the right dimension for the
iterated subspace each time. Besides, the total number of
eigenvalues to be found is obvious from the available graph.
However, in the latter case, one has to perform atrue search
for the eigenvalues, involving not only their location, but their
number as well, which is unknown in advance. The standard
theorems cannot be invoked since the matrices hold no special
properties of definiteness or symmetry. This is in contrast
with lossless three-dimensional (3-D) eigenvalue problems in
which it is indeed possible to make use of the properties of
Sturm sequences to efficiently compute this number for closed
segments of the real axis [4].

The uncertainty about the number of eigenvalues which
must be calculated is twofold: uncertainty about the total
number of eigenvalues within a certain large region or with
some specific properties (e.g., the number of modes below
cutoff or with an attenuation constant less than a given
threshold) and uncertainty about the number of eigenvalues in
a region surrounding a complex shift, i.e., uncertainty about the
choice of . Under these circumstances, there is the potential
risk of inadvertently missing some modes of the waveguide,
something which would rend the analysis useless for certain
practical purposes, such as the use of the numerical modes for
mode-matching applications. Additionally, the convergence of
the iterations may fail if one attempts to compute an inap-
propriate number of eigenvectors. Moreover, these difficulties
are exacerbated by the use of functionals with extraneous
nonphysical modes associated to the zero eigenvalue, which
then reaches a multiplicity of hundreds for an average-size
grid. It is the presence of this multiple eigenvalue that makes
it harder to locate and compute those eigenvalues that lie
very near the origin than those farther away from it. In
general, multiple physical eigenvalues or clusters of very close
eigenvalues may also be a source of trouble, as it becomes
more difficult to ascertain that all of the eigenvalues have
been found.

The aim of this paper is to describe a way of performing a
systematic search for the eigenvalues in the complex plane,
fixing the shortcomings of the subspace iteration method
described in the preceding paragraph. To do this, it is essential
to compute the number of eigenvalues enclosed in a given
contour before their finding is attempted. The convergence of
the eigenvalues depends on their distance from the shift, a
fact that suggests that the contour be a circumference centered
at the selected shift. The dimension of the subspace would

be given accordingly to the known number of eigenvalues
to be found or, in case where this was too high, the circle
could be subdivided into smaller slightly overlapping circular
regions where the procedure would be recurrently repeated.
The method of computing the number of eigenvalues lying
within a circle of given radius which we present is quite
straightforward from the theoretical point of view, but it turns
out to be preferable to other methods which can be found in
the mathematical literature, as shall be explained.

II. COMPUTATION OF THE NUMBER OF EIGENVALUES

Let be a complex number. is an eigenvalue of (1),
if and only if

(11)

where is the characteristic polynomial of degree
defined as the determinant . Let be a
closed contour on the plane, such that there are no zeros of

on the contour. The number of zerosin the interior of
is equal to the contour integral

(12)

The mapping maps the contour into the closed
curve Equation (12) can be put as

(13)

where , which immediately leads
to the well-known result that is simply the number of times
that encircles the origin.

In theory, there are several ways of computing. In [6],
a thorough discussion of the subject of locating the zeros
of an arbitrary analytic function can be found, including the
computation of its number as a preliminary step. A successful
direct application of the methods expounded in the reference
can be found, for example, in [7]. However, on account of the
peculiarities of the function , all of the proposed methods
based upon (12) have to be discarded, for the following
reasons.

1) Only the function and not its derivative is available.
Thus, the direct computation of the contour integral
(12) has to be ruled out. Another possibility would be
to estimate the derivative directly from the computed
values of in the integration points of some quadrature
rule, as explained in [6]. However, this method does not
work because of 2).

2) The value of cannot always be represented using
either REAL or even DOUBLE PRECISION arithmetic.
In practical cases, it is perfectly possible to find absolute
values as low as or as high as ,
e.g., see 3).
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3) Even worse, the dynamic range of the values can easily
outrun the dynamic range of a REAL and, in some
cases, a DOUBLE PRECISION number. That means
that normalized quantities may be almost as unwieldy as
the unnormalized ones. Moreover, even if normalization
is possible, these extremely strong variations cause the
numerical integration to give absolutely disastrous re-
sults for any reasonable or feasible number of integration
points.

The numerical experiments that we have carried out show
that the only practical way of tackling this problem is through
the direct computation of the number of times that the closed
contour encircles the origin of the plane. To perform this
computation, only the phase of the determinants is relevant.
Assume that the contour can be described as a continuous
function of a real parameter

(14)

with the condition For example, if
then Now, if

varies continuously from to , the phase of
will vary continuously from to and
the number of loops around the origin is

(15)

The difficulty with (15) is that we cannot compute the
continuous function directly. Instead, we have

(16)

where the function is the standard FORTRAN intrinsic
function, returning an argument between and ; the integer

has to be increased or decreased by one each time the-
contour cuts the negative real axis in the counterclockwise
direction or the clockwise direction, respectively, compensat-
ing for the jump discontinuity of the argument returned by the

function.
If we sample the values , of the function for two

“close” points , on the contour
the correction should be given the value which makes the
phase difference smaller, leading to the “unwrapping” rule [6]

(17)

where and are the estimations of the true factors.
The two sample points can be defined to be close precisely
if (17) gives the correct answer for , provided

is correct . The unwrapping rule will work
correctly when the straight-line segment connecting the couple

of consecutive points , cuts the negative real axis the
same number of times (i.e., one or not all) as the corresponding
curved segment of the contour [6]. Using this rule, a first
basic algorithm for the computation of the number of zeros
would be as follows.

1) Sample the contour at the points

2) Compute the arguments .
The arguments are computed as (ade-
quately shifted to the interval ) where the
are the diagonal elements of the matrixresulting from
the LU factorization of the matrix

.
3) Compute the phases using (17).
4) Compute the number of zeros using (15).

The bulk of the numerical burden of this algorithm is
attached to performing the LU factorizations of 2). The com-
putation time grows rapidly with the dimension of the matrices
and it is essential to keep the number of computed factoriza-
tions as low as possible. The minimum number of sample
points is given by the number below which the unwrapping
rule starts to fail.

Obviously, a major shortcoming of the algorithm is that
the necessary number of samples is unknown. One could
progressively refine the discretization of the contour, com-
puting the estimated number of zeros for each discretiza-
tion, and accepting the result when the convergence had
apparently been attained. However, this approach is neither
efficient nor reliable. Clearly, a uniform sampling scheme
is inadequate for this problem because the phase variations
(the “bandwidth” of the phase) can be arbitrarily fast since
there is always the possibility of finding several simple or
multiple zeros arbitrarily near the contour. In theory, if
a sample point happens to lie sufficiently near a too-
close zero, the matrix will become numerically
singular and the LU factorization will fail, signaling the
presence of the zero, but this is a random and improbable
event that will seldom take place; most often the phase will
go undersampled and an incorrect number of zeros will be
computed, even though most of the contour will have been
vastly oversampled.

It is clear from the above discussion that the optimum
sampling scheme would be a variable step-size sampling
scheme. The step size should vary on a sample by sample
basis, reflecting the changes of the derivative of the phase.
The steps should be biggest where the phase is varying more
predictably (i.e., approximately linearly with respect to the
parameter ) and smallest where the phase is rapidly changing
its rate of growth. The algorithm that we propose is based on
the prediction of the value from the previously
estimated values , where is
the order of the predictor. If the predicted value
and the computed value differ only tolerably, the estimation
is accepted and a new step size is calculated for the next
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sample. If, instead, the difference is greater than a tolerance,
the iteration is repeated with a smaller step size.

The computation of the number of zeros would proceed
with the following steps:

Step 1. compute with
;

Step 2. use (17) to compute
loop ;
Step 3.

if then end if;
Step 4. compute the prediction from

;
Step 5. compute and using (17),

with the prediction as the reference;
Step 6. compare the error

with the tolerances and branch the execution ac-
cordingly:

if then
error is OK

if then
successful end

return
else

size-step for new sample point

end if
else if then

if then
error model still OK:

reduce size-step to bring error
below the acceptable tolerance

else
the error model is not working:

abrupt decrease of step-size

re-sample the previously accepted
points before the last

with new step-size:
compute with

compute with the new
as reference

end if
else

step-size has become too small:
restart iterations from the beginning
for a new contour

choose new parameters for the new
contour
go to 1)

end if
end loop.

Some of the steps of this variable step-size algorithm
deserve further discussion. The prediction is simply
the value of the interpolating polynomial that fits the previous

estimated phases. Since the polynomial is used for ex-
trapolation purposes rather than interpolation, its order cannot
be too high, because the error can grow very fast outside the
interval for high-order polynomials; a good choice is
a third-order polynomial. Besides, the lower the order of the
polynomial, the more affordable the resetting of the predictor
and the error model becomes. The phase reference for the
unwrapping is the predicted value rather than the previous
estimated phase. This makes it possible to skip over whole
loops around the origin in a single step whenever the phase
variation is smooth enough for the prediction error to keep
within the acceptable bounds. It is especially advantageous
when the contour encloses a very high number of zeros,
particularly when the multiple null eigenvalue (a
multiplicity ranging the hundreds) of certain functionals is
“searched,” for the reasons that will be explained in the context
of the practical application of the method.

One aspect that greatly affects the performance of the
algorithm is the sound choice of the tolerances and
the minimum step The values of and
have to be chosen regarding the level of numerical noise
of the computed arguments; the rule is that one should
not try to predict the phase with greater accuracy than the
actual accuracy of the arguments computed from the LU
factorization, neither should the step size be so small that the
discrete nature of the underlying arithmetic becomes evident.
The upper bounds of the parameters should attend to the need
of preserving the robustness of the algorithm while minimizing
the number of computed determinants. The objective of the
algorithm is to resolve the ambiguity of the arguments returned
by the function. The prediction errors are unimportant
from the standpoint of the accuracy of the reconstructed phase
as long as the ambiguity is correctly resolved; besides, these
errors are not cumulative because actually the true values
of the phase and not the predicted ones are used for the
subsequent predictions.

Obviously, the magnitude of the error is an indicator of the
performance of the predictor, which can be thought to be in
one of the following states regarding the tracking of the phase.

Locked: The error model is working well. The cal-
culated step size
from the error model allows an accurate
prediction.

Partially locked: The calculated step size has resulted in an
inaccurate prediction, although the ambi-
guity of the phase is actually correctly
resolved. The error is small enough to
estimate a new smaller step size

which should bring the
predictor back to the locked state again.

Unlocked: The error is unacceptable, which indi-
cates that the error model is not working,
due to an abrupt variation, compared
with the present scale of sampling, of
the rate of change of the phase. An



ARROYO AND ZAPATA: SUBSPACE ITERATION SEARCH METHOD FOR GENERALIZED EIGENVALUE PROBLEMS 1119

Fig. 1. Cross section of a shielded dielectric image guide.

attempt to force the predictor back to
the locked state is made by resetting
the filter, resampling backward the phase
function with a strongly reduced step size

.

The calculation of each new step size is based on the
assumption that the dependence of the prediction error on the
step size is of the form

(18)

from which we have

(19)

where is a safety factor slightly smaller than unity and
bounds the relative increment of the step size to prevent ex-
cessive differences between adjacent points which deteriorate
the effective order of the predictor.

III. N UMERICAL RESULTS

To demonstrate the validity of the method, we will search
for the constants of propagation of the modes of the shielded
dielectric image guide [1], [11] (see Fig. 1) using two different
vectorial finite-element formulations. The first one [8] has the
square of the propagation constantas the eigenvalue

and the discretized magnetic (or electric) field as
the eigenvector, where is the scaled longitudinal component

, . The expression from which the generalized
eigenproblem is derived is

(20)

where is the transversal section of the waveguide,
are the permittivity and permeability of the medium, and

is any test function in the same
admissible function space as the trial function ;
the waveguide walls are of either perfect electrical conductor
(PEC), perfect magnetic conductor (PMC), or a combination
of both. The null eigenvalue is a solution of the generalized

eigenvalue problem and its multiplicity equals the number
of free longitudinal components of the discretized field. The
second formulation [9] has the propagation constant as the
eigenvalue and the eigenvector corresponds to the
transversal components of both the electric and magnetic
field , . For a waveguide inhomogeneously filled with
isotropic media, it is straightforward to derive an equivalent
Galerkin method

(21)

where are magnetic and electric test functions, respec-
tively, is the section of the waveguide, and the boundaries
are either PEC, PMC, or both. No extraneous solutions are
associated to the null eigenvalue in this case, but both the
forward-traveling and backward-traveling modes appear as
distinct solutions with opposite sign eigenvalues. Both formu-
lations have been implemented using mixed-order covariant
elements [10]. For a given mesh of fixed number and location
of the elements, the formulation in gives problems with
a lower number of degrees of freedom and, consequently, the
computation of each determinant is faster.

It should be pointed out that the example has been chosen
because of the availability of well-known results for validation
purposes. Although the matrices involved are not as general
as the formulation assumes, no advantage has been gained
from this fact, and the completely general sparse complex LU
factorization and eigensolver have been used. The algorithm
has been proven equally effective in every practical problem
to which we have applied it.

In these examples, we will deal exclusively with regions
of circular shape. Consequently, the computed number of
eigenvalues within the circumference directly becomes the
specified number of eigenvaluesto be found while the shift
is the center of the circumference

(22)

The first example consists in computing the multiplicity of
the null eigenvalue of the formulation with (which
will be referred to as “formulation I”) for a given mesh. In all
the following examples, the dimensions of the waveguide are

mm, mm, and mm
[1], the relative permittivity of the dielectric is , the
frequency is GHz. The mesh consists of 45 elements,
the number of degrees of freedom is 597, and the number of
free longitudinal components is 209. It takes approximately
1.3 s to compute each determinant on a Pentium-133 PC.
We choose a small radius , but one as small as
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Fig. 2. Multiple null eigenvalue� = 0 (formulation I) in the� plane. A
contourC of a very small radius encloses only this eigenvalue, except for the
different cutoff frequencies of the modes.

Fig. 3. Normalized reconstructed phase (loops) for the contour of Fig. 2.
The number of zeros is 209, while the number of samples is only 34.

is equally practical (see Fig. 2). The number of
eigenvalues within the contour coincides with the multiplicity
of the null eigenvalue, except when the frequency approaches
the cutoff frequency of one of the modes of the guide. In
this case ( GHz), no mode is near cutoff, but it would
suffice to repeat the calculation at a slightly different frequency
to validate the result. The reconstructed phase is represented
in Fig. 3, normalized to directly give the number of loops
around the origin or zeros, which is - ; the
number of samples is 34 (it would take at least 209*2418
equidistant samples for the simple unwrapping rule (17) to give
the correct answer). Since the shift coincides with the multiple
zero and the remaining zeros are very distant compared to the
radius of the circle, the phase is an almost perfectly linear
function of the parameter. This fact makes the computation
especially efficient and tens of loops are skipped from sample
to sample once the step has grown from its starting minimum
value, which initially ensures that the ambiguity of the phase
is correctly resolved. The increase of the sampling step can be
observed in detail in Fig. 4.

Once the multiplicity of the null eigenvalue is known, the
number of physical eigenvalues of absolute value less than a
value is simply

- (23)

Fig. 4. Argumentatan2(!) and actual samplesatan2(!i) for the contour
of Fig. 2. Only the first loop is unambiguously sampled.

Fig. 5. Location of the eigenvalues�0i = 
2
i
=j�0ij< 16 (formulation I:

f = 12 GHz; �non-phys = 209).

Next, we will attempt to find all the physical eigenvalues
lying within a circumference of radius for a frequency

of 12 GHz (see Fig. 5). The search will be carried out in
a systematic way. The first step is to compute (see
Fig. 6); the result is and, from (23), we have

i.e., there are five physical
eigenvalues to be found. Next, the circle is covered by nine
overlapping smaller circles in the way suggested by Lehmer
and adopted in [6] as: 1) a concentric circle of radius
and 2) eight circles of radius regularly spaced around
the remaining annulus (the distance of their centers from the

original center is .
In this case (see Fig. 7), we compute

. At this stage, one of these eigenvalues plus
the three within the annulus and a new outer eigenvalue are
successfully found.

In Figs. 8–10, the details concerning circle 2 can be ob-
served. The total number of samples is 117, with 13 acceptable
prediction errors and two unacceptable ones. The errors are
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Fig. 6. Normalized reconstructed phase (loops) for the contour of Fig. 5.
�(16) = 214: The number of samples (total)/acceptable errors/unacceptable
errors is 64/6/1.

Fig. 7. Lehmer’s subdivision of the circle of Fig. 5. Four out of the five
eigenvalues within the contour and a new outer eigenvalue are successfully
found.

Fig. 8. Lehmer’s subdivision of the circle of Fig. 5. Location of the relevant
zeros for circle 2.� = 12:98871; r = 6:666667.

due to the presence of the two complex conjugate zeros lying
very near the contour, which provoke a sharp variation of

Fig. 9. Normalized reconstructed phase (loops) for the contour of Fig. 8.
� = 2. The number of samples (total)/acceptable errors/unacceptable errors
is 117/13/2.

Fig. 10. Argumentatan2(!) and actual samplesatan2(!i) for the contour
of Fig. 8 (detailed view). The hump of the function corresponds to the presence
of an outer complex zero lying near the contour.

the derivative of the phase in its vicinity, and the strong
overall fluctuation of the phase because of the presence of
the multiple null eigenvalue displaced from the center of the
circle. The subdivision could proceed recursively to find the
single remaining zero, but it is more straightforward to try out
different shifts around the origin and set directly.

We will search for the same modes ( GHz) using
the second formulation (“formulation II”). The mesh is the
same as the one used with formulation I (45 elements), but
now the number of degrees of freedom is 776 and it takes
approximately 1.7 s to compute each determinant. We have

and the radius of the circle must be .
The location of the zeros and different Lehmer’s contours
can be seen in Fig. 11. The need for a subdivision of the
original circle depends on the ability of the solver to handle
a subspace of dimension . As in the previous
example, two additional outer eigenvalues are found in the



1122 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 8, AUGUST 1998

Fig. 11. Location of the eigenvalues�0i = �
i=j�0ij< 4 (formulation II:
f = 12 GHz; �non-phys = 0) and Lehmer’s contours employed for their
computation (the rest are unnecessary due to the symmetry of the location
of the zeros).

Fig. 12. Lehmer’s subdivision of the circle of Fig. 11. Location of the
relevant zeros for circle 3.� = 2:2961(1 + j); r = 1:6667.

Fig. 13. Normalized reconstructed phase (loops) for the contour of Fig. 12.
� = 0. The number of samples (total)/acceptable errors/unacceptable errors
is 94/7/4.

process of the subdivision and, again, there are some zeros
lying very near the contour of some of the circles, which
stresses the importance of ensuring the robustness of the
routine that computes the number of zeros. In Fig. 12, it can be
seen in circle 3 with an outer zero bordering the contour; the
normalized reconstructed phase can be observed in Fig. 13.
The total number of samples/acceptable errors/unacceptable
errors is 94/7/4. The rest of the contours of Fig. 11 pose no
special difficulty.

Regarding the number and the location of the eigenvalues,
the results are consistent with those shown in the references.
Of course, it is hardly necessary to mention that the results are
fully self-consistent (i.e., that the predicted and the computed
number of eigenvalues are identical in every case, which
asserts the robustness of the predictor).

IV. CONCLUSION

A method has been presented which solves the shortcomings
of the otherwise powerful inverse subspace iteration method
for the solution of generalized complex eigenvalue problems.
The reasons that justify the need for this method have been
explained. An algorithm for the computation of the number
of eigenvalues within a closed contour is given. The aim of
the algorithm is to minimize the numerical burden and yet to
ensure the robustness of the calculation. It has been shown
that the presence of an identically null eigenvalue of high
multiplicity affects the way in which the search for eigenvalues
of small absolute value has to be conducted. Several numerical
examples have been analyzed which show the effectiveness of
the proposed method and illustrate the possibility of perform-
ing a systematic search for the eigenvalues of a problem. The
recursive and exhaustive nature of the proposed method of
search guarantees that all the modes lying within a finite-size
closed contour be found.
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